
DBMS CHAPTER 5

The Relational Data Model and Relational

 Database Constraints

Prepared for B.Sc(H)Comp.Sc - sem IV

By: Ms.Shweta Wadhera

CHAPTER OUTLINE

• Relational Model Concepts

• Relational Model Constraints and Relational Database Schemas

• Update Operations and Dealing with Constraint Violations

RELATIONAL MODEL CONCEPTS

• The relational Model of Data is based on the concept of a

Relation

• In this chapter we talk about the basic characteristics of the

Relational Data Model and its constraints .

• This Model uses the concept of a Mathematical relation ,

which looks like a table of values .

• A Relation is a mathematical concept based on the idea of sets.

RELATIONAL MODEL CONCEPTS

• The model was first proposed by Dr. E.F. Codd of IBM Research
in 1970 in the following paper:

• "A Relational Model for Large Shared Data Banks,"
Communications of the ACM, June 1970

• The above paper caused a major revolution in the field of
database management and earned Dr.Codd the coveted ACM
Turing Award .

• The 1st commercial implementation of the relational model
became available in 1980s .

INFORMAL DEFINITIONS

• The relational model represents the database as a collection of

relations .

• Each relation resembles a Table of Values.

• A relation typically contains a set of rows.

• The data elements in each row represent certain facts that correspond
to a real-world entity or relationship

 In the formal model, rows are called tuples

• Each column has a column header that specify how to interpret the
Data Values in each row .

In the formal model, the column header is called an attribute name

(or just attribute)

EXAMPLE OF A RELATION

INFORMAL DEFINITIONS

• Key of a Relation:

• Each row has a value of a data item (or set of items) that

uniquely identifies that row in the table called the key

In the STUDENT table, SSN is the key.

FORMAL DEFINATIONS

• Domain :- A domain D is a set of Atomic values . By

atomic we mean that each value in the domain is indivisible

as far as the relational model is concerned .

• We generally give a name to the domain , because it helps in

interpreting its values.

• A datatype or format is also specified for each domain.

FORMAL DEFINITIONS - DOMAIN

• A domain has a logical definition:

• Example: “phone_numbers_of India ” are the set of 10 digit mobile numbers
valid in the India.

• A domain also has a data-type or a format defined for it.

• The phone_numbers_India may have a format: (ddd)ddd-dddd where each d
is a decimal digit.

• Dates have various formats such as year, month, date formatted as yyyy-
mm-dd, or as dd mm,yyyy etc.

• The attribute name designates the role played by a domain in a relation:

• Used to interpret the meaning of the data elements corresponding to that
attribute

• Example: The domain Date may be used to define two attributes named
“Invoice-date” and “Payment-date” with different meanings

FORMAL DEFINITIONS - SCHEMA

• The Schema (or description) of a Relation:

• A relation schema is used to describe a relation.

• Denoted by R (A1, A2,An)

• R is the name of the relation

• D is called the domain of Ai and is denoted by dom(Ai).

• The attributes of the relation are A1, A2, ..., An

• A relation schema R(A1, A2,….,An) , is made up of a relation

named R and a list of attributes A1,A2, … An .

• Each attribute Ai is the name of a role played by some

domain D in the Relation Schema R .

CONTD …

• The degree of a relation is the number of attributes n of

its relation schema .

• Example:

 CUSTOMER (Cust-id, Cust-name, Address, Phone#)

• CUSTOMER is the relation name

• Defined over the four attributes: Cust-id, Cust-name,

Address, Phone#

• Each attribute has a domain or a set of valid values.

• For example, the domain of Cust-id is 6 digit numbers.

RELATIONAL DATABASE SCHEMA

• Relational Database Schema:

• A set S of relation schemas that belong to the same
database.

• S is the name of the whole database schema

• S = {R1, R2, ..., Rn}

• R1, R2, …, Rn are the names of the individual relation
schemas within the database S

• Following slide shows a COMPANY database schema with 6
relation schemas

COMPANY DATABASE SCHEMA

FORMAL DEFINITIONS - TUPLE

• A tuple is an ordered set of values (enclosed in angled brackets „< … >‟)

• Each value is derived from its corresponding domain.

• A row in the CUSTOMER relation is a 4-tuple and would consist of four
values, for example:

• <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-
2000">

• This is called a 4-tuple as it has 4 values

• A relation is a set of such tuples (rows)

FORMAL DEFINITIONS – RELATION STATE

• A Relation State :- The relation state is a subset of the
Cartesian product of the domains of its attributes

• each domain contains the set of all possible values the
attribute can take.

• Example: attribute Cust-name is defined over the domain of
character strings of maximum length 25

• dom(Cust-name) is varchar(25)

• The role these strings play in the CUSTOMER relation is that of
the name of a customer.

FORMAL DEFINITIONS - SUMMARY

• Formally,

• Given R(A1, A2,, An)

• r(R) dom (A1) X dom (A2) XX dom(An)

• R(A1, A2, …, An) is the schema of the relation

• R is the name of the relation

• A1, A2, …, An are the attributes of the relation

• r(R): a specific state of relation R

• r(R) = {t1, t2, …, tn} where each ti is an n-tuple

• ti = <v1, v2, …, vn> where each vj element-of dom(Aj)

Defination of Relation State :

 A relation r , of the relation schema R(A1,A2,….,An) also denoted by r(R), is a
set of n-tuples . Each tuple will be an n-tuple ,bcoz there are “n attributes”

r (R)= { t1, t2, ….., tn }

CONTD ….

• Each n-tuple t is an ordered list of n values t = < v1, v2 ,…,vn >

where each value Vi , 1<= i <= n, is an element of dom (Ai) or is a

special Null value .

• Null value …. Values unknown or which do not exist or may not apply

to a particular entity . Ex : Off_phone_no.

FORMAL DEFINITIONS - EXAMPLE

• Let R(A1, A2) be a relation schema:

• Let dom(A1) = {0,1}

• Let dom(A2) = {a,b,c}

• Then: dom(A1) X dom(A2) is all possible combinations:

{<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }

• The relation state r(R) dom(A1) X dom(A2)

• For example: r(R) could be {<0,a> , <0,b> , <1,c> }

• this is one possible state (or “population” or “extension”) r of the relation R,
defined over A1 and A2.

• It has three 2-tuples: <0,a> , <0,b> , <1,c>

DEFINITION SUMMARY

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column Values Domain

Row Tuple

Table Definition Schema of a Relation

Populated Table State of the Relation

CHARACTERISTICS OF RELATIONS

• Ordering of tuples in a relation r(R):

• A relation is defined as a set of Tuples. Mathematically, elements

of a set have No order among them.

• Hence Tuples in a relation do not have any particular order.

• Also , defination of a relation does not specify any order.

• So there is no preference for one logical ordering over another.

• Hence relation states with different ordering of tuples are

considered as identical to each other.

EXAMPLE – A RELATION STUDENT

SAME STATE AS PREVIOUS FIGURE (BUT

WITH DIFFERENT ORDER OF TUPLES)

• Ordering of attributes in a relation schema R (and of values
within each tuple):

• We will consider the attributes in R(A1, A2, ..., An) and the
values in t = <v1, v2, ..., vn> to be ordered .

• According to the preceding defination of a relation , an n-
tuple is an ordered list of n-values , so the ordering of
values in a tuple is there…..

• and hence ordering of attributes in a relation schema is
important .

CHARACTERISTICS OF RELATIONS

• Values in a tuple:

• All values are considered atomic (indivisible).

• So composite and Multivalued attributes are NOT allowed .

• Each value in a tuple must be from the domain of the attribute

for that column

• If tuple t = <v1, v2, …, vn> is a tuple (row) in the relation state r of R(A1,

A2, …, An)

• Then each vi must be a value from dom(Ai)

• A special null value is used to represent values that are

unknown or inapplicable to certain tuples.

CHARACTERISTICS OF RELATIONS

• Notation:

• We refer to component values of a tuple t by:

• t [Ai] or t . Ai

• This is the value vi of attribute Ai for tuple t

RELATIONAL MODEL CONSTRAINTS

• Constraints are conditions that must hold on all valid

relation states.

• There are generally many restrictions or constraints on the

actual values in a DB state .

CATEGORIES OF CONSTRAINTS

• Model Based Constraints :- Constraints that are inherent in the

data model .

• Schema Based Constraints :- Constraints that can be directly

expressed in the schemas of the data model.(by specifying them in

DDL data defination Lang).

• Application based Constraints :- Constraints that cannot be directly

expressed in the schemas of the data model, and hence must be

expressed and enforced by the application programs .

SCHEMA BASED CONSTRAINTS

These include ……

• Domain Constraints

• Key Constraints

• Constraints on Nulls

• Entity Integrity constraints

• Referential Integrity constraints

• Domain Constraints

 Domain Constraints specify that within each tuple, the

value of each attribute Ai must be an atomic value from

the domain dom(Ai).

KEY CONSTRAINT

• A relation is a set of Tuples .

• All elements of a set are distinct .

 All tuples in a relation must be distinct .

 No two tuples can have the same combination of values.

• Suppose we denote one subset of values by sk .

• Then for any two distinct tuples t1 and t2 in a relation state r of R ,

we have the constraint

 t1[sk] != t2[sk]

Any such set of attributes sk is called a superkey

 of R .

 In a way we can say that …..

 A superkey sk specifies the uniqueness constraint ….

 i.e No two distinct tuples in any state r of R can have the same

value for sk.

 Infact every relation has atleast one default superkey ---- the set

of all its attributes .

KEY CONSTRAINTS

• Superkey of R:

• Is a set of attributes SK of R with the following condition:

• No two tuples in any valid relation state r(R) will have the same value
for SK

• That is, for any distinct tuples t1 and t2 in r(R), t1[SK] t2[SK]

• This condition must hold in any valid state r(R)

• Key of R:

• A "minimal" superkey

• That is, a key is a superkey K such that removal of any attribute from K
results in a set of attributes that is not a superkey (does not possess the
superkey uniqueness property)

• Example

• Sno Pno Qty_sold

 s1 p1 500

 s1 p2 200

 s1 p3 500

 s2 p1 500

 s2 p2 200

 s2 p3 500

 s3 p2 200

(Sno,Pno,Qty_sold) ….. SuperKey

(Sno.Pno) ………. Minimal Superkey

KEY CONSTRAINTS (CONTINUED)

• Example: Consider the CAR relation schema:

• CAR(State, Reg#, SerialNo, Make, Model, Year)

• CAR has two keys:

• Key1 = {State, Reg#}

• Key2 = {SerialNo}

• Both are also superkeys of CAR

• {SerialNo, Make} is a superkey but not a key.

• In general:

• Any key is a superkey (but not vice versa)

• Any set of attributes that includes a key is a superkey

• A minimal superkey is also a key

KEY CONSTRAINTS (CONTINUED)

• If a relation has several candidate keys, one is chosen arbitrarily to be
the primary key.

• The primary key attributes are underlined.

• Example: Consider the CAR relation schema:

• CAR(State, Reg#, SerialNo, Make, Model, Year)

• We chose SerialNo as the primary key

• The primary key value is used to uniquely identify each tuple in a
relation

• Provides the tuple identity

• Also used to reference the tuple from another tuple

• General rule: Choose as primary key the smallest of the candidate keys
(in terms of size)

• Not always applicable – choice is sometimes subjective

CAR TABLE WITH TWO CANDIDATE KEYS –

LICENSENUMBER CHOSEN AS PRIMARY KEY

ENTITY INTEGRITY

• Entity Integrity:

• The primary key attributes PK of each relation schema R in S

cannot have null values in any tuple of r(R).

• This is because primary key values are used to identify the individual

tuples.

• t[PK] null for any tuple t in r(R)

• If PK has several attributes, null is not allowed in any of these attributes

• Note: Other attributes of R may be constrained to disallow null

values, even though they are not members of the primary key.

REFERENTIAL INTEGRITY

• A constraint involving two relations

• The previous constraints involve a single relation.

• Used to specify a relationship among tuples in two relations:

• The referencing relation and the referenced relation.

REFERENTIAL INTEGRITY

• Tuples in the referencing relation R1 have attributes FK (called

foreign key attributes) that reference the primary key attributes

PK of the referenced relation R2.

• A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK]

= t2[PK].

• A referential integrity constraint can be displayed in a relational

database schema as a directed arc from R1.FK to R2.

REFERENTIAL INTEGRITY (OR FOREIGN KEY)

CONSTRAINT

• Statement of the constraint

• The value in the foreign key column (or columns) FK of the

the referencing relation R1 can be either:

• (1) a value of an existing primary key value of a corresponding

primary key PK in the referenced relation R2, or

• (2) a null.

• In case (2), the FK in R1 should not be a part of its own primary

key.

DISPLAYING A RELATIONAL DATABASE SCHEMA

AND ITS CONSTRAINTS

• Each relation schema can be displayed as a row of attribute
names

• The name of the relation is written above the attribute names

• The primary key attribute (or attributes) will be underlined

• A foreign key (referential integrity) constraints is displayed as a
directed arc (arrow) from the foreign key attributes to the
referenced table

• Can also point the the primary key of the referenced relation for
clarity

• Next slide shows the COMPANY relational schema diagram

Referential Integrity Constraints for COMPANY database

SUMMARY

• Presented Relational Model Concepts

• Definitions

• Characteristics of relations

• Discussed Relational Model Constraints and Relational
Database Schemas

• Domain constraints‟

• Key constraints

• Entity integrity

• Referential integrity

IN-CLASS EXERCISE

(Taken from Exercise 5.15)

Consider the following relations for a database that keeps track of student

enrollment in courses and the books adopted for each course:

STUDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book_ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this

schema.

