DBMS CHAPTER 5

The Relational Data Model and Relational Database Constraints

Prepared for B.Sc(H)Comp.Sc - sem IV By: Ms.Shweta Wadhera

CHAPTER OUTLINE

- Relational Model Concepts
- Relational Model Constraints and Relational Database Schemas
- Update Operations and Dealing with Constraint Violations

RELATIONAL MODEL CONCEPTS

- The relational Model of Data is based on the concept of a *Relation*
 - In this chapter we talk about the basic characteristics of the Relational Data Model and its constraints.

- This Model uses the concept of a Mathematical relation, which looks like a table of values.
- A Relation is a mathematical concept based on the idea of sets.

RELATIONAL MODEL CONCEPTS

- The model was first proposed by Dr. E.F. Codd of IBM Research in 1970 in the following paper:
 - "A Relational Model for Large Shared Data Banks," Communications of the ACM, June 1970
- The above paper caused a *major revolution* in the field of database management and earned Dr.Codd the coveted ACM Turing Award.
- The 1st commercial implementation of the relational model became available in 1980s.

INFORMAL DEFINITIONS

- The relational model represents the database as a collection of relations .
- Each relation resembles a Table of Values.
- A relation typically contains a **set of rows**.
- The data elements in each row represent certain facts that correspond to a real-world entity or relationship

In the formal model, rows are called tuples

 Each column has a column header that specify how to interpret the Data Values in each row.

In the formal model, the column header is called an attribute name (or just attribute)

EXAMPLE OF A RELATION

	Relation Name		Attr	ibutes			
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
1	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
1	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

Figure 5.1

The attributes and tuples of a relation STUDENT.

INFORMAL DEFINITIONS

- Key of a Relation:
 - Each row has a value of a data item (or set of items) that uniquely identifies that row in the table *called the key* In the STUDENT table, *SSN is the key*.

FORMAL DEFINATIONS

• **Domain** :- A domain D is a set of Atomic values. By atomic we mean that each value in the domain is **indivisible** as far as the relational model is concerned.

 We generally give a name to the domain , because it helps in interpreting its values.

• A datatype or format is also specified for each domain.

FORMAL DEFINITIONS - DOMAIN

- A **domain** has a logical definition:
 - Example: "phone_numbers_of India " are the set of 10 digit mobile numbers valid in the India.
- A **domain** also has a data-type or a format defined for it.
 - The phone_numbers_India may have a format: (ddd)ddd-dddd where each d is a decimal digit.
 - Dates have various formats such as year, month, date formatted as yyyymm-dd, or as dd mm,yyyy etc.
- The attribute name designates the role played by a domain in a relation:
 - Used to interpret the meaning of the data elements corresponding to that attribute
 - Example: The domain Date may be used to define two attributes named "Invoice-date" and "Payment-date" with different meanings

FORMAL DEFINITIONS - SCHEMA

- The Schema (or description) of a Relation:
 - A relation schema is used to describe a relation.
 - Denoted by R (A1, A2,An)
 - R is the **name** of the relation
 - D is called the domain of Ai and is denoted by dom(Ai).
 - The attributes of the relation are A1, A2, ..., An
 - A relation schema *R(A1, A2,...,An)*, is made up of a relation named R and a list of attributes A1,A2, ... An.
 - Each attribute Ai is the name of a role played by some domain D in the Relation Schema R.

• The degree of a relation is the number of attributes n of its relation schema.

• Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

- CUSTOMER is the relation name
- Defined over the four attributes: Cust-id, Cust-name, Address, Phone#

- Each attribute has a domain or a set of valid values.
 - For example, the domain of Cust-id is 6 digit numbers.

RELATIONAL DATABASE SCHEMA

- Relational Database Schema:
 - A set S of relation schemas that belong to the same database.
 - S is the name of the whole database schema
 - S = {R1, R2, ..., Rn}
 - R1, R2, ..., Rn are the names of the individual relation schemas within the database S
- Following slide shows a COMPANY database schema with 6 relation schemas

COMPANY DATABASE SCHEMA

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
-------	-------	-------	------------	-------	---------	-----	--------	-----------	-----

DEPARTMENT

Dnumber Dname Mgr_ssn Mgr_start_date

DEPT_LOCATIONS

Dnumber

Dlocation

PROJECT

Pnumber Plocation Pname Dnum

Hours

WORKS_ON

Essn Pno

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
------	----------------	-----	-------	--------------

Figure 5.5

Schema diagram for the COMPANY relational database schema.

FORMAL DEFINITIONS - TUPLE

- A tuple is an ordered set of values (enclosed in angled brackets '< ... >')
- Each value is derived from its **corresponding** *domain*.
- A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for example:
 - <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
 - This is called a 4-tuple as it has 4 values
- A relation is a **set** of such tuples (rows)

FORMAL DEFINITIONS – RELATION STATE

- A Relation State :- The relation state is a subset of the Cartesian product of the domains of its attributes
 - each domain contains the set of all possible values the attribute can take.
- Example: attribute Cust-name is defined over the domain of character strings of maximum length 25
 - dom(Cust-name) is varchar(25)
- The role these strings play in the CUSTOMER relation is that of the *name of a customer*.

FORMAL DEFINITIONS - SUMMARY

- Formally,
 - Given R(A1, A2,, An)
 - $r(R) \subset dom (A1) X dom (A2) XX dom(An)$
- R(A1, A2, ..., An) is the **schema** of the relation
- R is the **name** of the relation
- A1, A2, ..., An are the **attributes** of the relation
- r(R): a specific **state** of relation R
 - r(R) = {t1, t2, ..., tn} where each ti is an n-tuple
 - ti = <v1, v2, ..., vn> where each vj *element-of* dom(Aj)

Defination of Relation State :

A relation r , of the relation schema R(A1,A2,...,An) also denoted by r(R), is a set of n-tuples . Each tuple will be an n-tuple ,bcoz there are "n attributes" $r(R) = \{ t1, t2,, tn \}$

CONTD

- Each n-tuple t is an ordered list of n values t = < v1, v2,...,vn > where each value Vi, 1<= i <= n, is an element of dom (Ai) or is a special Null value.
- Null value Values unknown or which do not exist or may not apply to a particular entity. Ex : Off_phone_no.

FORMAL DEFINITIONS - EXAMPLE

- Let R(A1, A2) be a relation schema:
 - Let dom(A1) = {0,1}
 - Let dom(A2) = {a,b,c}
- Then: dom(A1) X dom(A2) is all possible combinations: {<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }
- The relation state $r(R) \subset dom(A1) \times dom(A2)$
- For example: r(R) could be {<0,a> , <0,b> , <1,c> }
 - this is one possible state (or "population" or "extension") r of the relation R, defined over A1 and A2.
 - It has three 2-tuples: <0,a> , <0,b> , <1,c>

DEFINITION SUMMARY

Informal Terms	Formal Terms
Table	Relation
Column Header	Attribute
All possible Column Values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of the Relation

CHARACTERISTICS OF RELATIONS

- Ordering of tuples in a relation r(R):
 - A relation is defined as a set of Tuples. *Mathematically, elements* of a set have No order among them.
 - Hence Tuples in a relation do not have any particular order.
 - Also, defination of a relation does not specify any order.
 - So there is no preference for one logical ordering over another.
 - Hence relation states with different ordering of tuples are considered as identical to each other.

EXAMPLE – A RELATION STUDENT

	Relation Name		Attr	ibutes			•
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
1	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples 🗲	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

Figure 5.1 The attributes and tuples of a relation STUDENT.

SAME STATE AS PREVIOUS FIGURE (BUT WITH DIFFERENT ORDER OF TUPLES)

Figure 5.2

The relation STUDENT from Figure 5.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

• Ordering of attributes in a relation schema R (and of values within each tuple):

- We will consider the attributes in R(A1, A2, ..., An) and the values in t = <v1, v2, ..., vn> to be ordered.
- According to the preceding defination of a relation, an ntuple is an ordered list of n-values, so the ordering of values in a tuple is there.....
- and hence ordering of attributes in a relation schema is important.

CHARACTERISTICS OF RELATIONS

• Values in a tuple:

- All values are considered atomic (indivisible).
- So composite and Multivalued attributes are NOT allowed.
- Each value in a tuple must be from the domain of the attribute for that column
 - If tuple t = <v1, v2, ..., vn> is a tuple (row) in the relation state r of R(A1, A2, ..., An)
 - Then each *vi* must be a value from *dom(Ai)*
- A special null value is used to represent values that are unknown or inapplicable to certain tuples.

CHARACTERISTICS OF RELATIONS

- Notation:
 - We refer to **component values** of a tuple t by:
 - t [Ai] or t. Ai
 - This is the value vi of attribute Ai for tuple t

RELATIONAL MODEL CONSTRAINTS

• Constraints are conditions that must hold on all valid relation states.

• There are generally many restrictions or constraints on the actual values in a DB state.

CATEGORIES OF CONSTRAINTS

- Model Based Constraints :- Constraints that are inherent in the data model .
- Schema Based Constraints :- Constraints that can be directly expressed in the schemas of the data model.(by specifying them in DDL data defination Lang).
- Application based Constraints :- Constraints that cannot be directly expressed in the schemas of the data model, and hence must be expressed and enforced by the application programs .

SCHEMA BASED CONSTRAINTS

These include

- Domain Constraints
- Key Constraints
- Constraints on Nulls
- Entity Integrity constraints
- Referential Integrity constraints

Domain Constraints

Domain Constraints specify that within each tuple, the value of each attribute Ai must be an atomic value from the domain dom(Ai).

KEY CONSTRAINT

- A relation is a set of Tuples .
- All elements of a set are distinct.
 - \rightarrow All tuples in a relation *must be distinct*.
 - \rightarrow No two tuples can have the same combination of values.
- Suppose we denote one subset of values by sk.
- Then for any two distinct tuples t1 and t2 in a relation state r of R, we have the constraint

t1[sk] != t2[sk]

Any such set of attributes sk is called a superkey

of R.

 \rightarrow In a way we can say that

A superkey sk specifies the uniqueness constraint

i.e No two distinct tuples in any state r of R can have the same value for sk.

→ Infact every relation has atleast one default superkey ---- the set of all its attributes .

KEY CONSTRAINTS

- Superkey of R:
 - Is a set of attributes SK of R with the following condition:
 - No two tuples in any valid relation state r(R) will have the same value for SK
 - That is, for any distinct tuples t1 and t2 in r(R), t1[SK] \neq t2[SK]
 - This condition must hold in *any valid state* r(R)
- Key of R:
 - A "minimal" superkey
 - That is, a key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property)

• Example

•	Sno	Pno	Qty_sold
	s1	p1	500
	s1	p2	200
	s1	р3	500
	s2	p1	500
	s2	p2	200
	s2	р3	500
	s3	p2	200

(Sno,Pno,Qty_sold) SuperKey (Sno.Pno) Minimal Superkey

KEY CONSTRAINTS (CONTINUED)

- Example: Consider the CAR relation schema:
 - CAR(State, Reg#, SerialNo, Make, Model, Year)
 - CAR has two keys:
 - Key1 = {State, Reg#}
 - Key2 = {SerialNo}
 - Both are also superkeys of CAR
 - {SerialNo, Make} is a superkey but *not* a key.
- In general:
 - Any *key* is a *superkey* (but not vice versa)
 - Any set of attributes that *includes a key* is a *superkey*
 - A minimal superkey is also a key

KEY CONSTRAINTS (CONTINUED)

- If a relation has several **candidate keys**, one is chosen arbitrarily to be the **primary key**.
 - The primary key attributes are <u>underlined</u>.
- Example: Consider the CAR relation schema:
 - CAR(State, Reg#, <u>SerialNo</u>, Make, Model, Year)
 - We chose SerialNo as the primary key
- The primary key value is used to *uniquely identify* each tuple in a relation
 - Provides the tuple identity
- Also used to *reference* the tuple from another tuple
 - General rule: Choose as primary key the smallest of the candidate keys (in terms of size)
 - Not always applicable choice is sometimes subjective

CAR TABLE WITH TWO CANDIDATE KEYS – LICENSENUMBER CHOSEN AS PRIMARY KEY

CAR

	<u> </u>			
License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Figure 5.4

The CAR relation, with two candidate keys: License_number and Engine_serial_number.

ENTITY INTEGRITY

- Entity Integrity:
 - The *primary key attributes* PK of each relation schema R in S cannot have null values in any tuple of r(R).
 - This is because primary key values are used to *identify* the individual tuples.
 - $t[PK] \neq null \text{ for any tuple t in } r(R)$
 - If PK has several attributes, null is not allowed in any of these attributes
 - Note: Other attributes of R may be constrained to disallow null values, even though they are not members of the primary key.

REFERENTIAL INTEGRITY

- A constraint involving **two** relations
 - The previous constraints involve a single relation.
- Used to specify a **relationship** among tuples in two relations:
 - The referencing relation and the referenced relation.

REFERENTIAL INTEGRITY

- Tuples in the **referencing relation** R1 have attributes FK (called **foreign key** attributes) that reference the primary key attributes PK of the **referenced relation** R2.
 - A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2.

REFERENTIAL INTEGRITY (OR FOREIGN KEY) CONSTRAINT

- Statement of the constraint
 - The value in the foreign key column (or columns) FK of the the **referencing relation** R1 can be **either**:
 - (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
 - (2) a **null**.
- In case (2), the FK in R1 should **not** be a part of its own primary key.

DISPLAYING A RELATIONAL DATABASE SCHEMA AND ITS CONSTRAINTS

- Each relation schema can be displayed as a row of attribute names
- The name of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined
- A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table
 - Can also point the the primary key of the referenced relation for clarity
- Next slide shows the COMPANY relational schema diagram

Referential Integrity Constraints for COMPANY database

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
DEPARTN	IENT								
Dname	Dnumb	<u>per</u> Mgr	_ssn N	/lgr_start_	date				
DEPT_LO	DEPT_LOCATIONS								
Dnumbe	r Dloc	cation							
L									
PROJECT									
Pname	Pnumb	per Ploc	ation	Dnum]				
	▲			L					
WORKS_0	ом 🗆								
Essn	Pno	Hours							
DEPEND	ENT								
Essn	Depend	lent_name	Sex	Bdate	Relations	ship			

SUMMARY

- Presented Relational Model Concepts
 - Definitions
 - Characteristics of relations
- Discussed Relational Model Constraints and Relational Database Schemas
 - Domain constraints'
 - Key constraints
 - Entity integrity
 - Referential integrity

IN-CLASS EXERCISE

(Taken from Exercise 5.15)

Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:

STUDENT(SSN, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN)

TEXT(Book_ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this schema.